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A B S T R A C T

Purpose
Outcomes for patients with diffuse large B-cell lymphoma remain heterogeneous, with existing
methods failing to consistently predict treatment failure. We examined the additional prog-
nostic value of circulating tumor DNA (ctDNA) before and during therapy for predicting patient
outcomes.

Patients and Methods
We studied the dynamics of ctDNA from 217 patients treated at six centers, using a training and
validation framework. We densely characterized early ctDNA dynamics during therapy using cancer
personalized profiling by deep sequencing to define response-associated thresholds within a dis-
covery set. These thresholds were assessed in two independent validation sets. Finally, we
assessed the prognostic value of ctDNA in the context of established risk factors, including the
International Prognostic Index and interim positron emission tomography/computed tomography
scans.

Results
Before therapy, ctDNA was detectable in 98% of patients; pretreatment levels were prognostic in
both front-line and salvage settings. In the discovery set, ctDNA levels changed rapidly, with a 2-log
decrease after one cycle (early molecular response [EMR]) and a 2.5-log decrease after two cycles
(major molecular response [MMR]) stratifying outcomes. In the first validation set, patients receiving
front-line therapy achieving EMR or MMR had superior outcomes at 24 months (EMR: EFS, 83% v
50%; P = .0015; MMR: EFS, 82% v 46%; P , .001). EMR also predicted superior 24-month
outcomes in patients receiving salvage therapy in the first validation set (EFS, 100% v 13%; P =
.011). The prognostic value of EMR andMMRwas further confirmed in the second validation set. In
multivariable analyses including International Prognostic Index and interim positron emission
tomography/computed tomography scans across both cohorts, molecular response was inde-
pendently prognostic of outcomes, including event-free and overall survival.

Conclusion
Pretreatment ctDNA levels and molecular responses are independently prognostic of outcomes in
aggressive lymphomas. These risk factors could potentially guide future personalized risk-directed
approaches.

J Clin Oncol 36:2845-2853. © 2018 by American Society of Clinical Oncology

INTRODUCTION

The addition of rituximab to combination cy-
clophosphamide, doxorubicin, vincristine, and
prednisone (R-CHOP) chemotherapy has im-
proved outcomes for patients with diffuse large
B-cell lymphoma (DLBCL). Despite this, a sig-
nificant fraction of patients continue to experience

disease relapse or mortality. Previous studies have
related clinical and molecular features with
outcomes in patients with DLBCL.1-5 This has
resulted in several prognostic tools to stratify
patients into risk groups; however, the impact of
these tools on improving outcomes has been
limited.6-8 Prior studies using the International
Prognostic Index (IPI) and interim positron
emission tomography (PET) to select patients

Author affiliations and support information

(if applicable) appear at the end of this

article.

Published at jco.org on August 20, 2018.

D.M.K. and F.S. contributed equally to this

work.

M.D. and A.A.A. contributed equally as

senior authors to this work.

Clinical trial information: NCT00398177,

NCT00001563, NCT00001337,

NCT00006436, and NCT00554164.

Corresponding author: Ash A. Alizadeh,

MD, PhD, Stanford University School of

Medicine, 259 Campus Drive, Stanford,

CA 94305; e-mail: arasha@stanford.edu.

© 2018 by American Society of Clinical

Oncology

0732-183X/18/3628w-2845w/$20.00

ASSOCIATED CONTENT

Appendix

DOI: https://doi.org/10.1200/JCO.

2018.78.5246

Data Supplement

DOI: https://doi.org/10.1200/JCO.

2018.78.5246

DOI: https://doi.org/10.1200/JCO.2018.

78.5246

© 2018 by American Society of Clinical Oncology 2845

VOLUME 36 • NUMBER 28 • OCTOBER 1, 2018

http://jco.org
mailto:arasha@stanford.edu
http://ascopubs.org/doi/full/10.1200/JCO.2018.78.5246
http://ascopubs.org/doi/full/10.1200/JCO.2018.78.5246
http://ascopubs.org/doi/full/10.1200/JCO.2018.78.5246
http://ascopubs.org/doi/full/10.1200/JCO.2018.78.5246
http://ascopubs.org/doi/full/10.1200/JCO.2018.78.5246
http://ascopubs.org/doi/full/10.1200/JCO.2018.78.5246


for intensified therapy have failed to improve survival.7,9-12 These
approaches are confounded in part by imperfect risk stratification,
including the variable specificity of interim PET/computed to-
mography (CT).6 Accordingly, alternative methods to predict
outcomes are needed.

Circulating tumor DNA (ctDNA) is an emerging bio-
marker across oncology, including for lymphomas.13-17 Previous
studies have highlighted the potential of ctDNA for noninva-
sive detection of tumor-specific mutations and molecular
subtyping.15,17 Detection of ctDNA in DLBCL at the start of the
third cycle of dose-adjusted chemotherapy by immunoglobulin
gene sequencing has demonstrated utility in predicting time
to progression; however, the impact of interim ctDNA on
survival remains unclear.14 Furthermore, because of the ease
of sample collection, ctDNA offers unique possibilities for re-
peated assessment before and during therapy.18,19 Moreover, the
prognostic performance of ctDNA in the context of other risk
factors, including the IPI and interim PET/CT, has not yet been
explored.

Here, we apply cancer personalized profiling by deep se-
quencing (CAPP-Seq) to examine the performance of ctDNA in
mutational genotyping and disease burden measurement in
large B-cell lymphomas. We explore the utility of ctDNA quan-
tification before and during therapy for predicting event-free
survival (EFS) at 24 months, an important disease milestone
in DLBCL,20,21 and overall survival (OS). In a training and val-
idation context, we define thresholds for molecular response
capable of predicting outcomes after as little as a single cycle of
therapy. Finally, we assess the utility of ctDNA in the context of
established prognostic tools, demonstrating independent value
for prediction of outcomes.

PATIENTS AND METHODS

Patients and Sample Collection
To study the dynamics of ctDNA in aggressive B-cell non-Hodgkin

lymphomas, we enrolled patients with large B-cell lymphomas un-
dergoing treatment at six institutions across North America and
Europe. Patients were enrolled separately at each institution for ob-
servational study of blood-based biomarkers with serial blood samples
collected and stored locally. Samples were subsequently retrospectively
analyzed centrally (Stanford University, Stanford, CA). Patients had
a pathologic diagnosis of DLBCL or primary mediastinal large B-cell
lymphoma according to the 2008 WHO criteria.22 Patients with an
antecedent low-grade lymphoma with histologic transformation were
considered eligible, as were patients with MYC and BCL2/BCL6 rear-
rangements. This study was approved by the local institutional review
board of each institution, and all patients provided written informed
consent. Patients were considered eligible if they fulfilled these di-
agnostic criteria, received curative-intent systemic therapy classified as
either front-line or salvage, had pretreatment blood plasma or serum,
and had a source of germline DNA. Samples from 227 patients were
screened, with 217 patients evaluable for analysis (Appendix Fig A1A,
online only).

To identify the optimal timing and thresholds for molecular re-
sponse, we profiled samples throughout the first two cycles of therapy
in a discovery set of 14 patients. After identifying the optimal tim-
ing and thresholds, we profiled samples before the first, second, and
third cycles of therapy from an additional 203 patients across all six
institutions.

We divided patients into two cohorts on the basis of site of en-
rollment. Patients from Stanford Cancer Center, MD Anderson Cancer
Center (Houston, TX), and University of Eastern Piedmont (Novara, Italy)
comprised cohort 1 (n = 144); 14 patients comprised the discovery set, and
the remaining 130 comprised validation set 1. Patients from the National
Cancer Institute (Bethesda, MD), Centre Hospitalier Universitaire Dijon
(Dijon, France), and Essen University Hospital (Essen, Germany) comprised
cohort 2 (n = 73), which also served as validation set 2 for molecular
response thresholds. A group of 48 healthy adults served as controls for
establishing specificity.23 Additional details on patient allocation are
available in Appendix Fig A1B.

Patients were treated with combination immunochemotherapy
according to local standards. Treatment was classified as either front-line or
salvage, with front-line therapy being anthracycline and rituximab based.
Survival analyses were performed separately for patients receiving
front-line or salvage therapy. Patients in cohort 1 were largely treated
with front-line therapy (frontline, 75%; salvage, 25%). Patients in
cohort 2 were uniformly treated with front-line therapy. The charac-
teristics of patients in this study are listed in Table 1 and in Appendix
Table A1 (online only). Responses were assessed by end-of-therapy
PET/CTaccording to guidelines.24 Interim PET/CTscans were available
for patients treated at Stanford, MD Anderson, Essen, and Dijon.
Interim PET/CT scans were performed after two to four cycles and
interpreted according to Deauville criteria by local radiologists, with
a score of 4 or 5 defined as positive.24 Across all cohorts, patients were
enrolled from December 1999 to September 2016; follow-up concluded in
February 2018, with a median follow-up time of 31.2 months. Additional
details of individual cohorts are available in the Data Supplement.

Mutational Analysis and ctDNA Quantitation
We performed targeted sequencing by CAPP-Seq as previously

described.23,25 Genes targeted by panels in this study are listed in the Data
Supplement. Somatic mutations were identified by paired analysis of either
tumor or pretreatment plasma/serum and germline DNA. Blood samples
were assessed for ctDNA by tracking somatic alterations in pretreatment
and serial samples. Quantitative levels of ctDNAwere measured in haploid
genome equivalents per milliliter (hGE/mL), determined as the product of
total cell-free DNA concentration and the mean allele fraction of somatic
mutations, expressed in log scale (log hGE/mL). A total of 850 specimens
were profiled. All samples were deidentified before processing through
uniform molecular biology, sequencing, and bioinformatic workflows
(Data Supplement).

Statistical Analysis
Comparisons of continuous variables were performed by unpaired t

test with Welch’s correction when assessing two sets or analysis of variance
when assessing more than two sets. Survival probabilities were estimated
using the Kaplan-Meier method; survival of groups was compared using
the log-rank test. We considered two survival end points: EFS, where an
event was defined as progression or relapse, unplanned retreatment of
lymphoma, or death resulting from any cause, and overall survival (OS),
where an event was defined as death resulting from any cause. Regression
analysis of multiple covariates was conducted by Cox proportional hazards
modeling, with P values assessed using the log-likelihood test. All P values
were two-sided.

Potential confounding by guarantee-time bias in survival analyses on
the basis of molecular response was mitigated by calculating survival from
the time point of response assessment (landmark approach).26 For each
analysis, survival was calculated from the time point of the latest as-
sessment of interest; for example, survival in analyses investigating early
molecular response (EMR) were calculated from the time of EMR as-
sessment or the start of cycle 2. Analyses were performed with MATLAB
(version 2017a; MathWorks, Natick, MA), R (version 3.4.1; R Foundation,
Vienna, Austria), and GraphPad Prism software (version 7.0a; GraphPad,
La Jolla, CA).
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RESULTS

Detection of Genetic Alterations in Cell-Free DNA
We sequenced tumor or pretreatment cell-free DNA to

identify somatic alterations for ctDNA quantitation and disease
monitoring from all patients. All but two patients (215 [99%] of
217) had at least one tumor-specific alteration identified for tumor
monitoring, with 95% of patients harboring more than five muta-
tions. Patients had a sufficient number of mutations to enable tumor
monitoring when genotyped from either tumor biopsies or pre-
treatment plasma (median, 160 and 117 mutations, respectively).

We detected ctDNA in 212 (98%) of 217 cell-free DNA
samples before therapy. There was no significant difference in the
burden of pretreatment ctDNA between sites of enrollment,
allowing comparison between cohorts (Fig 1A). This suggests that
quantitation of absolute ctDNA concentration is robust to pre-
analytic sample considerations. Pretreatment ctDNA was signif-
icantly associated with both IPI and total metabolic tumor
volume27 (TMTV) in patients receiving front-line therapy (Figs 1B
and 1C). This suggests ctDNA could serve as both a prognostic

factor and a quantitative proxy for disease burden, another known
prognostic factor for lymphomas.28

Prognostic Value of Pretreatment ctDNA
We next examined the effect of pretreatment ctDNA on out-

comes in patients from cohort 1. Levels of ctDNAwere continuously
associated with both EFS and OS in patients receiving either front-
line or salvage therapy (Appendix Table A2, online only). We then
determined an optimized threshold to stratify EFS in patients from
cohort 1 by bootstrap resampling (Appendix Fig A2A, online only).
Using this threshold of 2.5 log hGE/mL of ctDNA, patients with
high levels had significantly inferior rates of EFS at 24 months than
those with low levels (Fig 1D). This association was significant for
EFS in both front-line and salvage settings (front-line: hazard ratio,
2.6; P = .007; salvage: hazard ratio, 2.9; P = .01; Figs 1E and 1F).
Furthermore, high levels of ctDNA predicted significantly worse
OS in the salvage setting (Appendix Fig A3, online only). In
multivariable analysis, pretreatment ctDNA remained prognostic
for EFS in patients receiving front-line treatment when controlling
for IPI, molecular subtype, and TMTV (Figs 1G and 1H; Appendix
Table A3, online only).

Table 1. Patient Demographic and Clinical Characteristics

Characteristic

No. (%)

Entire Study
(n = 217)

Cohort 1*
(n = 144)

Cohort 2
(n = 73)Frontline Salvage

Median age, years 57 60 50
Diagnosis
DLBCL 168 (77) 115 (80) 53 (73)
DLBCL, transformed low grade 25 (12) 23 (16) 2 (3)
PMBL 24 (11) 6 (4) 18 (25)

Stage
I 20 (9) 14 (10) 6 (8)
II 50 (23) 28 (19) 22 (30)
III 35 (16) 24 (17) 11 (15)
IV 112 (52) 78 (54) 34 (47)

IPI
0 to 1 78 (36) 49 (34) 29 (40)
2 54 (25) 37 (26) 17 (23)
3 46 (21) 32 (22) 14 (19)
4 to 5 39 (18) 26 (18) 13 (18)

Molecular features
GCB 76 (35) 50 (35) 26 (36)
Non-GCB 71 (33) 53 (37) 18 (25)
Not applicable 70 (32) 41 (28) 29 (40)
Double hit (MYC and BCL2/BCL6) 9 (4) 8 (6) 1 (1)

Cell-free DNA samples available
Pretreatment 217 108 36 73
Cycle 2, day 1 120 76 15 29
Cycle 3, day 1 120 62 8 50

Lines of therapy considered
R-CHOP 97 (45) 65 (45) — 32 (44)
EPOCH-R 74 (34) 41 (28) — 33 (45)
Other anthracycline-based regimen 10 (5) 2 (1) — 8 (11)
Platinum-based regimen 15 (7) — 15 (10) —

Other regimen 21 (10) — 21 (15) —

Abbreviations: DLBCL, diffuse large B-cell lymphoma; EPOCH-R, etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin plus rituximab; GCB, germinal
center B cell–like; IPI, International Prognostic Index; PMBL, primary mediastinal B-cell lymphoma; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine,
and prednisone.
*Cohort 1 statistics are inclusive of the discovery set (n = 14) studied for definition of early molecular response (EMR) andmajor molecular response (MMR) time points
and response thresholds. Within the discovery set, two patients were not evaluable at the EMR and MMR milestones.
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Fig 1. Pretreatment circulating tumor DNA (ctDNA) is a robust biomarker in diffuse large B-cell lymphoma. (A) Stacked scatter plot of pretreatment ctDNA levels (mean and 95%CI) in
study patients across cohorts. Cohort 1 is comprised of patients from Stanford (Stanford, CA), MD Anderson (Houston, TX), and Eastern Piedmont (Novara, Italy); Cohort 2 is comprised
of patients from the NCI (Bethesda, MD), Essen University Hospital (Essen, Germany), and Centre Hospitalier Universitaire (Dijon, France) (B) Stacked scatter plot demonstrates the
relationship between pretreatment ctDNA levels and International Prognostic Index (IPI). (C) Scatter plot shows the correlation between total metabolic tumor volume (TMTV) and ctDNA
concentration. (D) Waterfall plot of pretreatment ctDNA levels (y-axis) for individual patients in cohort 1 (bars) and best responses by positron emission tomography/computed to-
mography (PET/CT; colors) and event-free survival (EFS) at 24 months (triangles). The threshold best separating patients for EFS is shown by a dashed line. The relationship between
pretreatment ctDNA levels and overall response rate (ORR)/EFS at 24 months is also shown (Fisher’s exact test). (E, F) Kaplan-Meier estimates of EFS from the start of therapy for
patients in cohort 1 stratified by pretreatment ctDNA levels are shown. (E) EFS in patients receiving front-line anthracycline-based therapy; (F) EFS in patients receiving salvage therapy.
(G, H) Results of univariable and multivariable proportional hazards models for EFS are shown in patients with TMTV data available. Full results of the proportional hazards models are
shown in Appendix Table A3. ANOVA, analysis of variance; hGE, haploid genome equivalent; HR, hazard ratio; NCI, National Cancer Institute; ND, not detected. (*) Significant.
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Dynamics of ctDNA During Therapy Correlate With
Disease Response

Interestingly, although baseline ctDNA level was prognostic
for outcome, there was only a nonsignificant trend for association
with standardized best response category (P = .07; Fig 1D). We
therefore hypothesized that early ctDNA dynamics during therapy
might better predict response. To define the optimal timing and
thresholds to predict therapy response, we observed densely
timed serial plasma samples during the first three cycles in
a discovery set of 14 patients. Levels changed rapidly, such that
patients achieving an eventual complete response had a large
drop in ctDNA within 1 week (Fig 2A). We next used the
change in ctDNA from baseline at various time points to
predict the best PET/CT response assessment (Appendix Fig
A2B). Changes in ctDNA were prognostic of complete re-
sponse; by the midpoint of the first cycle (6 to 16 days),

patients could be perfectly discriminated as responders and
nonresponders. By the start of cycle 2 of therapy (ie, 21 days
after start of therapy), a clear separation between groups
emerged, with a 100-fold or 2-log drop in ctDNA predicting
an eventual complete response. A similar 2.5-log drop by the
start of cycle 3 also separated responders from nonresponders
(Fig 2A).

Having observed this effect in our discovery set, we further
explored the dynamics of ctDNA in all patients from cohort 1.
We assessed the change in ctDNA at the start of cycle 2 and cycle
3 of therapy for patients achieving standardized best response
categories according to end of therapy PET/CT scans.24 As in
the discovery set, the decline in ctDNA after a single cycle was
larger in responders than in nonresponders (Fig 2B; Appendix
Fig A4A and A4B, online only). This was true regardless of the
line (ie, front line v salvage) or type of therapy (ie, R-CHOP v
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dose-adjusted etoposide, doxorubicin, cyclophosphamide,
vincristine, and prednisone plus rituximab [EPOCH-R]; Ap-
pendix Fig A4C and A4D). These consistent findings confirm
the prognostic value of ctDNA when assessing response to di-
verse systemic regimens, whether administered at diagnosis or
relapse.

Furthermore, we found that our previously discovered 2-log
drop in ctDNA by the start of cycle 2 separated patients achieving
a complete response from those who did not (Fig 2B); this
threshold was therefore defined as an early molecular response
(EMR). Similarly, a 2.5-log drop by the start of cycle 3 was defined
as a major molecular response (MMR). Importantly, these
thresholds initially found in the discovery set were further
confirmed to be the optimum thresholds for determining EFS
using bootstrap resampling (Appendix Fig A2C and A2D). No-
tably, EMR and MMR were concordant in 92% of patients (57 of
62) in whom both were evaluable, demonstrating robust perfor-
mance of molecular response (Fig 2C).

EMR and MMR Predict Survival in DLBCL
Wenext explored the association between ctDNAdynamics and

survival. Similar to pretreatment ctDNA levels, the change in ctDNA
after one or two cycles of therapy was continuously associated with
both EFS and OS (Appendix Table A2). However, changes in ctDNA
corresponded to a wider dynamic range of outcome predictions
compared with pretreatment levels, suggesting its importance as
a prognostic factor (Appendix Fig A5, online only).

We further assessed the performance of EMR and MMR
thresholds for predicting survival in the first validation set. Here,
EMR and MMR were prognostic for both EFS and OS in patients
receiving front-line therapy (EMR, P = .0015 and P, .001; MMR,
P, .001 and P = .0047, respectively; Figs 2D to 2G). EMR was also
prognostic for both EFS and OS in patients receiving salvage
therapy (P = .011 and P = .011, respectively; Appendix Fig A6,
online only); too few patients receiving salvage therapy had data
available to evaluate MMR in this subgroup.
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Fig 3. Validation of the prognostic value of circulating tumor DNA (ctDNA). (A) Kaplan-Meier estimates of event-free survival (EFS) from the start of therapy for patients in
cohort 2 stratified by pretreatment ctDNA levels are shown. The cut point separating high from low ctDNA was determined in cohort 1. (B) Kaplan-Meier estimates of EFS
from the time of early molecular response (EMR) assessment for patients in validation set 2 achieving or not achieving EMR. (C) Kaplan-Meier estimates of EFS from the
time of major molecular response (MMR) assessment for patients in validation set 2 achieving or not achieving MMR.

Table 2. Prognostic Value of IPI, Pretreatment ctDNA, Molecular Response, and Interim Imaging

Parameter

Univariable Multivariable

HR (95% CI) P HR (95% CI) P

EFS
IPI (0 to 5) 1.21 (0.87 to 1.69) .25 0.93 (0.63 to 1.37) .71
Pretreatment ctDNA (low v high) 2.77 (1.08 to 7.13) .034* 2.97 (0.92 to 9.62) .070
Molecular response† 5.93 (2.52 to 13.95) , .001* 8.58 (3.3 to 22.32) , .001*
Interim PET (positive v negative) 3.74 (1.46 to 9.57) .006* 3.45 (1.27 to 9.34) .015*

OS
IPI (0 to 5) 1.36 (0.82 to 2.23) .23 1.14 (0.63 to 2.25) .670
Pretreatment ctDNA (low v high) 3.12 (0.65 to 15.05) .16 1.13 (0.16 to 8.21) .899
Molecular response† 5.27 (1.41 to 19.78) .014* 4.15 (1.17 to 15.57) .029*
Interim PET (positive v negative) 22.35 (2.83 to 2868) , .001* 16.87 (1.96 to 2214) .005*

Abbreviations: ctDNA, circulating tumor DNA; EFS, event-free survival; HR, hazard ratio; IPI, International Prognostic Index; OS, overall survival; PET, positron emission
tomography.
*Significant.
†MMR or EMR as available; see Data Supplement.
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Independent Validation of Prognostic Significance of
Pretreatment ctDNA, EMR, and MMR

To further confirm the prognostic significance of pretreatment
ctDNA and molecular response, we assessed their performance in
a second validation set of patients receiving front-line therapy. As
in cohort 1, patients with lower pretreatment ctDNA levels (, 2.5
log hGE/mL) had superior EFS (Fig 3A). Similarly, patients in
validation set 2 achieving either EMR or MMR had signifi-
cantly better EFS than patients who did not (Figs 3B and 3C).
The magnitude of these effects was similar between validation
set 1 and validation set 2. These associations were not significant
for OS in validation set 2, although this analysis was limited by the
small cohort and a low number of events (Appendix Fig A7,
online only).

Prognostic Value of ctDNA Measurements Is
Independent of IPI and Interim Imaging Studies

Finally, we assessed the ability of ctDNA dynamics to predict
outcomes for patients in the context of established risk factors, in-
cluding IPI and interim PET/CT. We performed a multivariable
analysis of patients across both cohorts who were evaluable for
molecular response (MMR or EMR as available; Data Supplement)
and also had an interim PET/CT scan. Here, the change in ctDNA
remained significantly prognostic for both EFS and OS (Table 2).

We further assessed the ability of molecular response to
predict outcomes in subsets of patients defined by IPI and interim
PET/CT. Molecular response (MMR or EMR as available)
remained prognostic for EFS and OS in patients with low (0 to 2)
or high (3 to 5) IPI (Figs 4A to 4D). Furthermore, molecular
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Fig 4. Prognostic value ofmolecular response is independent of International Prognostic Index (IPI) and interim imaging. (A, B) Kaplan-Meier estimates show the effect of
molecular response on event-free survival (EFS) in patients receiving front-line therapy with (A) low-risk/low-intermediate-risk IPI (score, 0 to 2) or (B) high-intermediate risk/
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response remained prognostic for both EFS and OS in the context
of interim PET/CT. Patients with favorable results for both mo-
lecular response and interim PET had excellent outcomes. In
contrast, the combination of a positive interim PET scan and no
molecular response identified a group of patients at extremely high
risk for treatment failure (Figs 4E and 4F).

DISCUSSION

Here, we assessed the utility of ctDNA profiling by targeted high-
throughput sequencing for risk monitoring in DLBCL. By studying
more than 200 patients from six centers, we demonstrate robust
performance of ctDNA detection by CAPP-Seq. Specifically, we were
able to identify more than 100mutations to enable tumormonitoring
in the median patient. Furthermore, ctDNAwas detectable in 98% of
patients, demonstrating its potentially universal applicability. We also
demonstrate similar levels of ctDNA across sites of enrollment. This
suggests ctDNA could serve as a biomarker in multicenter trials.

In addition, we explored the significance of pretreatment and
dynamic ctDNAmeasurements for predicting outcomes. We found
pretreatment levels to be prognostic, with a threshold of 2.5 log
hGE/mL stratifying patients for EFS. Pretreatment ctDNA levels
were highly correlated with both IPI and TMTV, suggesting its role
as a surrogate for disease burden. Furthermore, pretreatment
ctDNA was prognostic of EFS independently of IPI and TMTV,
suggesting ctDNA could improve pretreatment risk stratification.

We found that ctDNA dynamics as early as 21 days into
therapy were prognostic for patient outcomes. We discovered and
validated optimal thresholds for the change in ctDNA during
therapy to predict outcomes. These thresholds, including a 2-log
drop in ctDNA after one cycle (EMR) and a 2.5-log drop after two
cycles (MMR), predicted EFS during front-line therapy in two
validation sets. In comparison with pretreatment levels, EMR and
MMR demonstrated superior stratification of outcomes, indicating
their importance as risk factors. Although EMR and MMR were
prognostic for EFS in both validation sets, significant prognostic
value for OSwas only observed in validation set 1. This analysis was
likely confounded by the low number of deaths in validation set 2.
Prospective studies confirming the prognostic significance of EMR
and MMR for OS will be useful.

Additionally, we found that pretreatment ctDNA and EMR
were prognostic in both front-line and salvage settings, suggesting
molecular response is potentially applicable regardless of line of
therapy. However, it is important to note that cohort 2 focused
exclusively on front-line therapy; thus, additional studies specific
to salvage therapy will be essential. Furthermore, although our
study was inclusive of all DLBCL subtypes, it was not powered to
assess individual subgroups. Accordingly, EMR (n = 12) and MMR
(n = 15) were not prognostic when considering patients with
transformed indolent lymphomas receiving front-line therapy.
Larger studies dedicated to specific subtypes such as transformed
lymphomas will therefore be required.

Interestingly, the prognostic value of molecular response was
independent of established factors; in multivariable analyses, both
molecular response and interim PET/CT remained independently
prognostic for survival. Moreover, the combination of molecular
response and interim PET/CT response was able to robustly stratify

EFS and OS. The identification of patients at exceptionally high risk
(ie, interim PET/CT positive and not achieving EMR/MMR) could
provide an opportunity for early intervention with alternative
treatments, including autologous bone marrow transplantation or
chimeric antigen receptor T cells.29-31 The identification of this
highest-risk group could improve risk-adapted approaches that have
previously failed to improve outcomes.6 Additional studies in pa-
tients with standardized interim PET/CT scans performed at uni-
form landmarks will be needed. Furthermore, studies to determine
the natural history of patients achieving only molecular response but
not interim imaging response, or vice versa, will be useful.

We envision early milestones such as EMR and MMR will be
useful in many areas. EMR may be used in drug development as an
early surrogate end point in trials.32 Alternatively, ctDNA quan-
titation could be used in clinical practice as a prognostic factor for
individual patients. Finally, these biomarkers could guide per-
sonalized approaches in novel clinical trial designs. One first ap-
proach could include intensifying therapy for patients who do not
achieve EMR/MMR and have a positive interim PET/CT scan.
Additional studies exploring approaches for integrating ctDNA
with traditional risk-assessment tools will be useful.

Although ctDNA assays are becoming increasingly common in
the clinic, the success of molecularly driven approaches will require
standardization, harmonization, and broad availability. Our data
suggest that both pretreatment and dynamic assessments of ctDNA
are feasible and can add to established risk factors. These approaches
may allow novel clinical trial designs, with wide applicability to
patients with DLBCL and potentially other lymphomas.
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Fig A1. Patient recruitment flowchart and training/validation schema. (A) A flowchart depicts the patients and samples included in this study from each of the six
participating institutions, and their allocation to cohorts used to discover/train time-points and response thresholds for the early molecular response and major molecular
response, and to validate these indices. Samples were collected and stored at each of six independent centers. Patient samples were then sent to Stanford University for
processing and study. (B) Table showing how patients were allocated for training and validation of each threshold described in this study.
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Fig A2. Identification of optimized cut-point for pretreatment circulating tumor DNA (ctDNA), early molecular response, and major molecular response. (A) Patients from
cohort 1 (n = 144) were randomly sampled with replacement 2,000 times (bootstrap resampling). The threshold for pretreatment ctDNA that best separated patients for
event-free survival was selected in each of these 2,000 datasets, when considering this threshold in quarter-log steps. The best cut-point from each of these 2,000 samples
is shown on a histogram. (B) Top panels: Receiver operating characteristic curves using serial ctDNAmeasurements to predict eventual best response in the discovery set
(Fig 2A). The optimum cut-point is labeled with a dot. Bottom panels: The performance of the optimum cut-point for prediction of eventual best response in the discovery
set. (C) Bootstrap resampling of patients from cohort 1 as shown in panel A, but for cycle 2, day 1 ctDNA from patients with data available (n = 91). The best cut-point from
each of these 2,000 samples is shown on a histogram. (D) Bootstrap resampling of patients from cohort 1 as shown in panel A, but for cycle 3, day 1 ctDNA from patients
with data available (n = 70). The best cut-point from each of these 2,000 samples is shown on a histogram.
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Fig A5. Relationship between circulating tumor DNA (ctDNA) as a continuous variable and survival. Here, the six panels demonstrate the relationship between
pretreatment ctDNA levels (A, B) or the change in ctDNA levels after one (C, D) or two (E, F) cycles of therapy and event-free or overall survival as continuous variables in
cohort 1. For each predictor (pretreatment ctDNA or change in ctDNA after one or two cycles), a univariate Cox proportional hazardmodel was built as described in the Data
Supplement. The relationship between the predictor and the probability of event-free (A, C, E) or overall survival (B, D, F) are shown, with higher concentrations of ctDNA
both prior to and during therapy predicting inferior survival. Three curves demonstrate the probability of event or death at 12, 24, and 36 months. The concentration or
change in ctDNA is shown on the x -axis, with patient-values from cohort 1 shown as a rug plot. The corresponding probability of an event at 24 months for each patient is
shown on the y -axis as an individual tick mark within each rug plot. ND, not detected.
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Fig A6. Early (EMR) and major molecular response (MMR) in salvage therapy. (A, B) Kaplan-Meier estimates demonstrate the event-free and overall survival for patients in validation
set 1 who received salvage therapy based on EMR, calculated from the start of cycle 2. (C, D) Kaplan-Meier estimates demonstrate the event-free and overall survival for patients who
received salvage therapy based on MMR, calculated from the start of cycle 3.
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Fig A7. Overall survival of validation cohort 2. (A) Kaplan-Meier estimates of overall survival from the start of therapy for patients in cohort 2 stratified by pretreatment circulating tumor
DNA (ctDNA) levels are shown. The cut-point separating high from low ctDNAwas determined in cohort 1. (B) Kaplan-Meier estimates of overall survival from the time of earlymolecular
response (EMR) assessment for patients in validation set 2 achieving or not achieving EMR. (C) Kaplan-Meier estimates of overall survival from the time of major molecular response
(MMR) assessment for patients in validation set 2 achieving or not achieving MMR.

Table A1. Patient Characteristics by Enrollment Site

Characteristic
Discovery Set

(n 5 14)
Stanford
(n 5 64)

MD Anderson
(n 5 44)

Italy
(n 5 36)

NCI
(n 5 33)

Dijon
(n 5 25)

PETAL
(n 5 15)

Median age, years 54.5 61 56.5 64.5 37 65 52
Diagnosis
DLBCL 12 (86) 43 (67) 38 (86) 34 (94) 17 (52) 21 (84) 15 (100)
DLBCL, transformed low grade 2 (14) 20 (31) 1 (2) 2 (6) 0 (0) 2 (8) 0 (0)
PMBL 0 (0) 1 (2) 5 (11) 0 (0) 16 (48) 2 (8) 0 (0)

Stage,
1 0 (0) 8 (13) 2 (5) 4 (11) 3 (9) 2 (8) 1 (7)
2 3 (21) 8 (13) 13 (30) 7 (19) 16 (48) 3 (12) 3 (20)
3 0 (0) 9 (14) 10 (23) 5 (14) 3 (9) 4 (16) 4 (27)
4 11 (79) 39 (61) 19 (43) 20 (56) 11 (33) 16 (64) 7 (47)

IPI
0 to 1 3 (21) 18 (28) 19 (43) 12 (33) 20 (61) 6 (24) 3 (20)
2 1 (7) 17 (27) 12 (27) 8 (22) 9 (27) 5 (20) 3 (20)
3 6 (43) 12 (19) 8 (18) 12 (33) 2 (6) 7 (28) 5 (33)
4 to 5 4 (29) 17 (27) 5 (11) 4 (11) 2 (6) 7 (28) 4 (27)

Molecular features
GCB 6 16 15 19 7 11 8
Non-GCB 3 15 23 15 2 9 7
Not applicable 5 33 6 2 24 5 0
Double hit (MYC and BCL2/BCL6) 1 1 7 0 0 1 0

Cell-free DNA samples available
Pretreatment 14 64 44 36 33 25 15
Cycle 2, day 1 12 45 14 32 29 0 0
Cycle 3, day 1 12 40 1 29 30 20 0

Lines of therapy considered
R-CHOP 1 (7) 20 (31) 9 (20) 36 (100) 0 (0) 17 (68) 15 (100)
EPOCH-R 10 (71) 27 (42) 14 (32) 0 (0) 33 (100) 0 (0) 0 (0)
Other anthracycline-based regimen 0 (0) 2 (3) 0 (0) 0 (0) 0 (0) 8 (32) 0 (0)
Platinum-based regimen 1 (7) 6 (9) 9 (20) 0 (0) 0 (0) 0 (0) 0 (0)
Other regimen 2 (14) 9 (14) 12 (27) 0 (0) 0 (0) 0 (0) 0 (0)

NOTE: Data presented as No. (%) unless otherwise indicated.
Abbreviations: DLBCL, diffuse large B-cell lymphoma; EPOCH-R, etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin plus riituximab; GCB, germinal
center B-cell–like, IPI, International Prognostic Index; NCI, National Cancer Institute; PETAL, Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin
Lymphomas; PMBL, primary mediastinal B-cell lymphoma; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone.
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Table A2. Univariable Cox Proportional Hazard Models

Variable Range of Values Units No. of Patients

Event-Free Survival Overall Survival

HR 95% CI P HR 95% CI P

Frontline treatment
Pretreatment ctDNA -2 to 5.15 Log (hGE/mL) 108 1.68 1.24 to 2.29 .0008* 1.57 1.07 to 2.29 .02*
Log-fold change in ctDNA, cycle 2 -6 to 1.04 AU 76 1.42 1.14 to 1.77 .0015* 2.17 1.41 to 3.34 .0005*
Log-fold change in ctDNA, cycle 3 -6 to 2.11 AU 62 1.46 1.21 to 1.77 , .0001* 1.55 1.22 to 1.98 .0004*

Salvage treatment
Pretreatment ctDNA -2 to 5.15 Log (hGE/mL) 36 1.42 1.07 to 1.89 .015* 1.48 1.10 to 1.99 .009*
Log-fold change in ctDNA, cycle 2 -6 to 1.04 AU 15 2.41 1.21 to 4.83 .013* 2.22 1.18 to 4.17 .013*
Log-fold change in ctDNA, cycle 3 -6 to 2.11 AU 8 3.63 0.88 to 14.9 .0730 2.26 0.96 to 5.30 .0610

NOTE: These analyses consider the effect of pretreatment ctDNA level and log-fold change in ctDNA by cycle 2, day 1 or cycle 3, day 1 on event-free and overall survival
as a continuous variable. Undetectable ctDNAwas assigned a value below the dynamic range of our assay (0.01 hGE/mL in the pretreatment setting and a log-fold change
of -6 in the post-treatment setting).
Abbreviations: AU, arbitrary units; ctDNA, circulating tumor DNA; hGE, haploid genome equivalents; HR, hazard ratio.
*Significant.

Table A3. Multivariable Cox Proportional Hazard Models of Pretreatment Factors

Parameter Range of Values Units

Univariable Multivariable

HR (95% CI) P HR (95% CI) P

Event Free Survival
IPI 0 to 5 NA 1.41 (1.02 to 1.95) .038* 0.87 (0.55 to 1.39) 0.568
Pretreatment ctDNA -2 to 5.15 Log (hGE./mL) 1.91 (1.29 to 2.83) .0012* 1.90 (1.12 to 3.23) 0.018*
Cell of origin GCB, non-GCB NA 1.07 (0.46 to 2.51) .87 1.23 (0.49 to 3.07) 0.661
Metabolic tumor volume -0.16 to 3.75 Log (mL) 1.96 (1.13 to 3.42) .017* 1.25 (0.65 to 2.43) 0.502

Overall Survival
IPI 0 to 5 NA 1.62 (1.05 to 2.50) .029* 1.23 (0.69 to 2.17) 0.48
Pretreatment ctDNA -2 to 5.15 Log (hGE./mL) 1.72 (1.07 to 2.76) .024* 1.30 (0.65 to 2.59) 0.46
Cell of origin GCB, non-GCB NA 0.66 (0.20 to 2.14) .490 0.65 (0.18 to 2.29) 0.50
Metabolic tumor volume -0.16 to 3.75 Log (mL) 2.64 (1.20 to 5.82) .016* 1.64 (0.60 to 4.45) 0.34

NOTE: These analyses consider the effect of pretreatment ctDNA levels and other predictors of outcome obtained prior to treatment on event-free and overall survival in
multiple regression models. Risk factors considered include pretreatment ctDNA, International Prognostic Index, total metabolic tumor volume, and molecular cell of
origin. Undetectable ctDNA was assigned a value below the dynamic range of our assay (0.01 hGE/mL).
Abbreviations: IPI, International Prognostic Index; GBC, germinal center B-cell–like; hGE, haploid genome equivalents; NA, not applicable.
*Significant.
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